THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016 Problem Set 2: The Real Numbers

1. If $a, b \in \mathbb{R}$, prove the following.

- (a) If a + b = 0, then b = -a,
- (b) -(-a) = a,
- (c) (-1)a = -a,
- (d) (-1)(-1) = 1,
- (e) -(a+b) = (-a) + (-b),
- (f) $(-a) \cdot (-b) = a \cdot b$,
- (g) 1/(-a) = -(1/a),
- (h) -(a/b) = (-a)/b if $b \neq 0$.
- 2. If $a \in \mathbb{R}$ satisfies $a \cdot a = a$, prove that either a = 0 or a = 1.
- 3. If $a \neq 0$ and $b \neq 0$, show that 1/(ab) = (1/a)(1/b).
- 4. If a, b and c are real numbers, prove that
 - (a) If a < b and $c \leq d$, prove that a + c < b + d.
 - (b) If 0 < a < b and $0 \le c \le d$, prove that $0 \le ac \le bd$.
- 5. (a) Show that if a > 0, then 1/a > 0 and 1/(1/a) = a.
 - (b) Show that if a < b, then $a < \frac{1}{2}(a+b) < b$.
- 6. (a) Prove there is no $n \in \mathbb{N}$ such that 0 < n < 1. (Use the Well-Ordering Property of \mathbb{N} .)
 - (b) Prove that no natural number can be both even and odd.
- 7. Let $S_1 := \{x \in \mathbb{R} : x \ge 0\}$. Show in detail that the set S_1 has lower bounds, but no upper bounds. Show that $\inf S_1 = 0$.
- 8. Let $S_2 := \{x \in \mathbb{R} : x > 0\}$. Does S_2 have lower bounds? Does S_2 have upper bounds? Does inf S_2 exist? Does $\sup S_2$ exist? Prove your statements.
- 9. Let $S_3 := \{1/n : n \in \mathbb{N}\}$. Show that $\sup S_3 = 1$ and $\inf S_3 = 0$.
- 10. Let $S_4 := \{1 (-1)^n : n \in \mathbb{N}\}$. Find $\sup S_4$ and $\inf S_4$.
- 11. Let $S_5 := \{r \in \mathbb{Q} : r > 0\}$. Find $\inf S_5$
- 12. Let S be a nonempty subset of \mathbb{R} that is bounded below. Prove that $\inf S = -\sup\{-s : s \in S\}$.
- 13. Show that if A and B are bounded subsets of \mathbb{R} , then $A \cup B$ is a bounded set. Show that $\sup(A \sup B) = \sup\{\sup A, \sup B\}$. (Remark: Can it be generalized to a finite / an infinite collection of bounded subsets of \mathbb{R} ?)

- 14. Let $S \subseteq \mathbb{R}$ and suppose that $s^* := \sup S$ belongs to S. If $u \notin S$, show that $\sup(S \sup\{u\}) = \sup\{s^*, u\}$. (Remark: Special case of the previous question with suitable modification.)
- 15. Show that a nonempty finite set $\sup S \subseteq \mathbb{R}$ contains its supremum. (Hint: Use Mathematical Induction and the preceding exercise.)
- 16. If $S := \{1/n 1/m : n, m \in \mathbb{N}\}$, find $\inf S$ and $\sup S$.
- 17. Let A and B be bounded nonempty subsets of \mathbb{R} , and let $A + B := \{a + b : a \in A, b \in B\}$. Prove that $\sup A + B = \sup A + \sup B$ and $\inf A + B = \inf A + \inf B$.
- 18. If y > 0, show that there exists $n \in \mathbb{N}$ such that $1/2^n < y$.
- 19. If u > 0 is any real number and x < y, show that there exists a rational number r such that x < ru < y. (Hence the set $\{ry : r \in \mathbb{Q}\}$ is dense in \mathbb{R} .)
- 20. Suppose a and b are positive real numbers. Show that there exists $n \in \mathbb{N}$ such that a/n < b.
- 21. Let $I_n := [0, 1/n]$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} I_n = \{0\}$.
- 22. Let $J_n := (0, 1/n)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} J_n = \phi$.
- 23. Let $K_n := (n, \infty)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} K_n = \{0\}$.
- 24. Suppose $I_n, n \in \mathbb{N}$, is a nested sequence of closed bounded intervals. Prove that $I_{2n}, n \in \mathbb{N}$, is also a nested sequence of closed bounded intervals. Furthermore, if $\xi \in \mathbb{R}$ such that $\xi \in I_{2n}$ for any $n \in \mathbb{N}$, show that $\xi \in I_n$ for any $n \in \mathbb{N}$.