THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5000 Analysis I 2015-2016
Problem Set 2: The Real Numbers

1. If $a, b \in \mathbb{R}$, prove the following.
(a) If $a+b=0$, then $b=-a$,
(b) $-(-a)=a$,
(c) $(-1) a=-a$,
(d) $(-1)(-1)=1$,
(e) $-(a+b)=(-a)+(-b)$,
(f) $(-a) \cdot(-b)=a \cdot b$,
(g) $1 /(-a)=-(1 / a)$,
(h) $-(a / b)=(-a) / b$ if $b \neq 0$.
2. If $a \in \mathbb{R}$ satisfies $a \cdot a=a$, prove that either $a=0$ or $a=1$.
3. If $a \neq 0$ and $b \neq 0$, show that $1 /(a b)=(1 / a)(1 / b)$.
4. If a, b and c are real numbers, prove that
(a) If $a<b$ and $c \leq d$, prove that $a+c<b+d$.
(b) If $0<a<b$ and $0 \leq c \leq d$, prove that $0 \leq a c \leq b d$.
5. (a) Show that if $a>0$, then $1 / a>0$ and $1 /(1 / a)=a$.
(b) Show that if $a<b$, then $a<\frac{1}{2}(a+b)<b$.
6. (a) Prove there is no $n \in \mathbb{N}$ such that $0<n<1$. (Use the Well-Ordering Property of \mathbb{N}.)
(b) Prove that no natural number can be both even and odd.
7. Let $S_{1}:=\{x \in \mathbb{R}: x \geq 0\}$. Show in detail that the set S_{1} has lower bounds, but no upper bounds. Show that $\inf S_{1}=0$.
8. Let $S_{2}:=\{x \in \mathbb{R}: x>0\}$. Does S_{2} have lower bounds? Does S_{2} have upper bounds? Does inf S_{2} exist? Does $\sup S_{2}$ exist? Prove your statements.
9. Let $S_{3}:=\{1 / n: n \in \mathbb{N}\}$. Show that $\sup S_{3}=1$ and $\inf S_{3}=0$.
10. Let $S_{4}:=\left\{1-(-1)^{n}: n \in \mathbb{N}\right\}$. Find $\sup S_{4}$ and $\inf S_{4}$.
11. Let $S_{5}:=\{r \in \mathbb{Q}: r>0\}$. Find $\inf S_{5}$
12. Let S be a nonempty subset of \mathbb{R} that is bounded below. Prove that $\inf S=-\sup \{-s: s \in S\}$.
13. Show that if A and B are bounded subsets of \mathbb{R}, then $A \cup B$ is a bounded set. Show that $\sup (A \sup B)=\sup \{\sup A, \sup B\}$. (Remark: Can it be generalized to a finite / an infinite collection of bounded subsets of \mathbb{R} ?)
14. Let $S \subseteq \mathbb{R}$ and suppose that $s^{*}:=\sup S$ belongs to S. If $u \notin S$, show that $\sup (S \sup \{u\})=$ $\sup \left\{s^{*}, u\right\}$. (Remark: Special case of the previous question with suitable modification.)
15. Show that a nonempty finite set $\sup S \subseteq \mathbb{R}$ contains its supremum. (Hint: Use Mathematical Induction and the preceding exercise.)
16. If $S:=\{1 / n-1 / m: n, m \in \mathbb{N}\}$, find $\inf S$ and $\sup S$.
17. Let A and B be bounded nonempty subsets of \mathbb{R}, and let $A+B:=\{a+b: a \in A, b \in B\}$. Prove that $\sup A+B=\sup A+\sup B$ and $\inf A+B=\inf A+\inf B$.
18. If $y>0$, show that there exists $n \in \mathbb{N}$ such that $1 / 2^{n}<y$.
19. If $u>0$ is any real number and $x<y$, show that there exists a rational number r such that $x<r u<y$. (Hence the set $\{r y: r \in \mathbb{Q}\}$ is dense in \mathbb{R}.)
20. Suppose a and b are positive real numbers. Show that there exists $n \in \mathbb{N}$ such that $a / n<b$.
21. Let $I_{n}:=[0,1 / n]$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} I_{n}=\{0\}$.
22. Let $J_{n}:=(0,1 / n)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} J_{n}=\phi$.
23. Let $K_{n}:=(n, \infty)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} K_{n}=\{0\}$.
24. Suppose $I_{n}, n \in \mathbb{N}$, is a nested sequence of closed bounded intervals. Prove that $I_{2 n}, n \in \mathbb{N}$, is also a nested sequence of closed bounded intervals. Furthermore, if $\xi \in \mathbb{R}$ such that $\xi \in I_{2 n}$ for any $n \in \mathbb{N}$, show that $\xi \in I_{n}$ for any $n \in \mathbb{N}$.
